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FOREWORD -

This report was prepared for use as a text in a short course
that was presented in Buenos Aires, Argentina, June-July, 1976. The
short course was sponsored by the Naval Hydrographic Service of the
Argentine Navy, under the auspices of the Organization of American
States. This program was a part of their Multinational Marine Science
Project.

The material contained in this report was drawn from many sources.
Although an effort was made to give proper credit to the multitude of
information sources used to prepare the report, some omissions may have

occurred. The author assumes full responsibility for all omissions.
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INTRODUCTION

The gravity method has a very important place in a well-planned
comprehensive geophysical program. The principles of gravitational attrac-
tion upon which the method is based are well-established. It follows,
therefore, that an interpretation of gravity data which has geological sig-
nificance must be based on an intelligent use of these underlying physical
principles, either directly or indirectly. It follows also that any attempt
to interpret gravity data into its geological import without respect to
these physical principles cannot be considered scientifically acceptable.

Much time and effort have been spent seeking directwcorrelations
between known geological structures aﬁd corresponding gravity measurements.
In many cases, such as those of some of the shallow salt domes of the Texas-
Louisiana Gulf Coast, very good direct correlétions exist. However, there
are some shallow salt domes in the same geological province for which the
gravity data show practically no anomaly. Hence, interpretation of gravity
data is complex.

Various techniques have been developed to aid in interpreting
gravity measurements in terms of the subsurface structure. The so-called
"curvature' data of torsion balance measurements, are an example. Other
techniques, which largely are of a subjective nature,'consist in reducing
gravity data to a "'residual" by various methods of "removing the regional."
The so-called '"'second derivative' method, although often said to be

"more mathematical," is also a subjective technique similar to the residual.



Graticules, nomograms, tables and charts are examples of other
interpretational techniques which relate gravity measurements to a geologic
model. To use these tools, the problem is first reduced in complexity by
a reduction in the number of parameters. For example, by assuming that one
horizontal dimension of the subsurface structure is infinite in extent,

a two-dimensional cross-section is developed. Then by reducing the
number of density differentials to only one, the solutions become manage-
able, although not unique.

This last type of interpretation if used intelligently is
scientifically honest in the sense that all these simplifying conditions
are clearly understood and that the principles of gravitational attraction
are not discarded. However, as is well known, even these methods of |
subsurface interpretation require careful application. FEvery person
interested in the interpretation of gravity data would do well to go
through both types of interpretational techniques to get the '"feel" of
the complexity of the problem even when it is reduced to relatively simple
proportions.

For completeness, the elementary physical concepts, definitions,
and mathematical formulations will be reviewed.

Force and Acceleration--The first of the three laws of motion, as

stated by Newton, says that a body will persist in its state of rest or
of uniform motion in a straight line unless impelled to change that state
by external forces. This law gives rise to the concept of force. To

understand the consequences of the physical principles embodied in this



law of motion, consider first a body in empty space indefinitely removed

in distance from any other body. It would be impossible to make any dis-
tinction between that body at rest or that body moving with constant velocity
in a straight line, unless we had some point of reference, to which point

we would have to ascribe arbitrarily the property of either being at rest

or of moving with constant velocity in a straight line. In other words, a
body at rest and a body moving uniformly in a straight line are in a very
important sense simply relative states of one another.

When a force is applied to such a body, however, things begin to
happen. What is a force? A force is a push or a pull. This simple defini-
tion will suffice for now, although force is a funaamental concept of
mechanics which is studied and understood by its properties. Force is an
undefined concept to which properties are ascribed to fit the nature of
the physical world as we experience it.

The important attributes--properties--of a force are: (1) Magnitude
(How big is it?), and (2) Direction. Intuitively, one may have a feeling
for these properties, but force can be defined in a quantitative manner
by examining the effects of applying a force to a body.

To do this we start with the elementary units of mechanics: (1) dis-
tance (measured in metres or feet or such), (2) mass (measured in grams or
pounds or such), and, (3) time (measured in seconds or such). The concepts

of distance and time are intuitively understood. But the concept of mass

must be dissociated from weight. By the mass of an object, one means the
amount of matter in it, regardless of its weight. A gram of matter is

the same here or anywhere else in the universe. The weight of this gram of



matter, on the other hand, will depend on its position and the attendant
forces. For example, a gram of water is defined as the mass of water, under

standard conditions, in a cubic centimetre. The weight of this water on the

earth, or anywhere else, for that matter, will vary from point to point.

But its mass is one gram. In the same way, the mass of any body is the
amount of matter in it, not its weight at some point.

Because it is practical to do so, and for no other reason; a gram
of mass of material is defined as the amount of the material whose weight
at an arbitrary point is equal to the weight of a gram of water at that
same point. Note that the gram of material so defined is the mass in a
certain volume, which is the same everywhere. .

Next, using a point of reference, consider a body of mass M (grams)
moving in a straight line with a velocity v'(cm/sec). With no force acting
on this body, it will persist in moving at this constant velocity (which
may be zero, if it is at rest). The momentum of this body is defined to be
the product of its mass and velocity. That is the momentum M of a body of

mass m moving with a velocity v.

M= mv;
and it follows that the units of M are
gr. cm, /see,
As an example, a body of 15 grams moving with a velocity of 25 en./sec. has
a momentum of 375 gr.cm./sec. A body at rest has a momentum of zero.
Newton's Second Law of Motion states that rate of change of momentum
is proportional to the force acting and takes place in the direction of that

force.



The phrase ''rate of change' refers to the time rate of change:
the change that occurs in the momentum - its increase or decrease - during
certain intervals of time. Thus, assuming the rate of change is constant,
for purposes of illustration, the rate of change of momentum is the amount
by which the momentum is increased (or decreased) each unit of time (second).
The unit of this rate of change of momentum is thus seen to be

(gr.cm./sec.)/sec.

The Second Law of Motion says essentially that the effect of a
force acting on a body is to change the momentum of that body at a rate
proportional to the magnitude of that force.

Consider, again; the momentum M of a body of mass M moving in a
straight line with constant velocity v.

M= mv.
Suppose a force - call it F for the present - is now applied in the
direction of this moving body. Its momentum will change, according to
the Second Law of Motion. The Mass M of the body cannot change; therefore,
only the velocity can change with the change of momentum.

By definition, rate of change of velocity is called acceleration

Accordingly, rate of change of momentum is equivalent to the product of
the mass of the body and its acceleration.

The Second Law of Motion thus reduces itself to the statement that
the product of the mass m of a body and its acceleration a (in a given
direction) is proportional to the force F acting to produce that accelera-
tion. The effect of a force, in other words, is to produce an acceleration

on a body in direct proportion to its magnitude.



If the factor of proportionality is assumed to be unity, the rela-

tion says that

F =3
In this case the units of the force F are those of the rate of change of
momentum:
(géicm./sec.j}sec.,
usually, and more simply, written
gr.cm./sec.2
This unit of force is defined, anew, as a dyne; i.e.,
1 dyne - 1 gr.cm./sec.2
Stated more specifically, 1 dyne is the amount of force required
to give a mass of 1 gram an acceleration of 1 cm./sec.2 In geophysics,
the unit gal is often used for acceleration. Thus 1 gal = 1 cm./sec.z,
and 1 dyne - 1 gr. gal. Gravity anomalies are stated in terms of milligals.
If one holds a 1-gram mass in h¥s hand, the force exerted upward
in this process is just enough to counterbalance the force of the earth
pulling on this 1-gram hass. If allowed to fall, the mass will fall with
an acceleration of 980 cm.sec.2 The pull of the earth on this gram - the
force exerted to hold it up - is thus

F= (1 gr.) x 980 (cm./sec.z)

980 dynes.

Roughly, then, a dyne is apprximately 1/980 - or, in round numbers,
1/1000 of the force needed to hold up 1 gram of matter.

The second attribute of the concept of force, direction, is funda-
mental. In common with some other mechanical quantities, like velocity

and acceleration, it is necessary to specify both the magnitude and direction



of a force for a complete definition. In this regard, then, it is called
a vector as contrasted with a scalar quantity which is specified only by
its magnitude.

Thus, one must not be content in saying, "A force of 10 dynes'';
the direction in which that force is applied must also be specified.
Customarily, then, a force is indicated by an arrow, nointing in the direction
of the force, the length of whose stem is equal to its magnitude.

Being a vectorial quantity, a force shares in common with other
types of vector quantities the properties of combining with other forces
into a resultant force; and of decomposition into components. The resultant
of two forces and the component of a force are graphically illustrated in

the figures below.

Gravitational Attraction--A force, as described above, is a push or

a pull. 1In our daily life forces of many types are experienced. There
are frictional forces and electrical forces; forces exerted in walking , in
pushing, in pulling; forces which impel machinery and forces which slow

things down.



One type of force which is completely all-pervading, ordinarily
taken for granted and seldom considered extraordinary, is the universal
force of gravitation. The fact that the universe nursues its orderly
course, that individuals dovnot float about but are kept down to earth,
all in response to universal gravitation: this usually fails to excite
more than passing interest. In fact, only very young infants seem to be
facinated in noticing that an object, left free, will fall, Grown-ups
have learned to expect the object to fall.

Until the beginning of quantitative and experiemental science, a
considerable amount of theological and other philosophical disputations
persisted, naive in some respects and tragic in others, which dealt with
falling bodies, orbits of planets and satellites and other celestial phen-
omena, all of which are known today to be moving in accordance with the
single universal law of gravitational attraction. Empirical astronomical
results made from observations - by the Egyptians, by the Greeks, and
later by Kepler and others - were for a long time known, but only as
individual items of considerable interest, curiosity and importance. The
unification of these items under a single physical law and its consequences
was one of the early triumphs of physical science and mathematics.

Newton, as is well known, first stated clearly the Law of

Universal Gravitation and pursued its implications with what he called

The Method of Fluxions, a mathematical tool he fashioned for his needs,
and which, today, is called the calculus. A whole new vista of science

was now opened in that experimental and observational science could make



rapid progress with the help of mathematical analysis. In the physical
sciences at least, it became possible to predict with certainty.

For simplicty, the universe can be considered to be made up of
particles of masses which will not be defined except to say that the
geometric dimensions of the particles are small. Indeed, they may be
considered as tiny spheres. Between every pair of such particles, a
force of attraction exists whose direction is along the straight line
joining those particles. That is, each particle in the universe '"pulls"
on every other particle.

How big is this pull existing between a pair of particles?
Intuitively, it would appear that this force should increase as the masses
of the particles increase. In fact, one proverty of this universal force
of gravitational attraction between two particles is that, in magnitude,
it is proportional to the masses of the two particles. It should appear
intuitively also that the farther removed these particles are from one
another, the smaller this force should be. For various reasons the 'inverse"
square law' suggests itself and becomes justified in later developments
by observation and measurement, terrestial and celestial.

Combining all these arguments, we now state the basic law of uni-
versal gravitational attraction in this manner:

There exists a force of attraction between each two particles
in the universe whose magnitude is proportional directly to the
masses of those particles and inversely to the square of the

distance between those particles.



10

Specifically, let two particles vhose masses
are m, and m; be separated by a distance r.

The force f of attraction between them is

£ =G EL?%!E..

The numerical value of the proportionality factor G is a matter of the
units of mass, distance and force employed and is the same throughout
the universe.

In general, my and m, are expressed in grams, r in centimetres,

and f in dynes. Since
2
1 dyne =1 gr.em./sec.”,

the relation above says, in dimensions, that

in‘-cm-/sec.2 =q Er. . 8T.

cm? |

It follows, then, that the "unit" of the universal gravitational

constant G is
cm.3
2
gr.sec.

At first, there appears to be a severe difficulty in the statement

of the law of gravitation. It would seem that, as the distance between

the two particles decreses to zero, the attracting force increases in-

definitely because of the inverse-square relationship. The resolution of

A\l
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this apparent paradox is, however, suggested
- by this argument. Suppose that a very minute

particle of mass m, rests on a larger

1

(spherical) particle of radium r and svecific

gravity §. The mass of the second particle is

- 3
Dy = krr%
. 3

. . v

-

For the present, the assumption will be made that the larger particle
attracts the first one as though all its matter were concentrated at its

center (later this will be shown to be true for a homogeneous spherical

41Tr3

mass) . The magnitude of the force of attraction, since m, = —= is

4nr36 1 G 4m8m,

! 3 r? 3
Thus, f will approach zero, rather than increase indefinitely, as r approaches
Zero.

The gravitational constant G is universal in the sense that for any
particular set of units (the C.G.S. system, for example), it has the
same value throughout all space. For the most part we shall use the C.G.S.

system, in which the value is

4 L 5
G = 6.67 x 10°8 e
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This value has been determined experime ntally in the laboratory over
many years by careful refinements of the Cavendish experiment.

Generally, for calculations, it is useful to use

3
G =5 X 107 R sec.?

Accepting as true this value for G, the assumption that the earth is a
homogeneous sphere with a radius of 4000 miles and the principle stated
above that a homogeneous spherical mass attracts as if all of its mass
were concentrated at its center, the mean specific gravity of the edrth
can be calculated.

Recall that a gram of matter at the surface ofithe earth, and
the earth attract each other with a force of about 980 dynes (the
centrifugal effect of the earth's rotation may be neglected). Retween

two spheres the attraction is

Substituting F = 980 DYN€S>
]
3

g = 20 x 10-8 CHM.

) GR., ssc.2 ’

My o= 1 GRAM,

My = Ey, THE MASS OF THE EARTH,



13

and the radius of the earth r in centimetres is

r = (k000 X 5280 x 30)

% 6.4 x 10° centimeters.

Now, if the specific gravity of the earth is D, then

Lrpe®D

3 .

mstz

e d

and the formula becomes:

:@ - Alxu"x 3 !
%O 3x10 x—g?'—rn

%0 « 20 x 10°X 12.5 X 6.4 x 10° .

hence

D=5.5,

That is to say, there is 5.5 times as much mass in the earth as there
would be if it were composed entirely of water. The "weight'" of the
earth is 5.5 times as great as it would be if composed entirely of
water.

Continuously Distributed Matter - The Gravitational '"Field"--

The statement of the Law of Universal Gravitation postulates the existence
of a specific force of attraction between every pair of particles. To
develop the consequences of this principle for masses as distinguished
from particles raises certain philosophical difficulties which are of

considerable practical importance, As in all physical science, the
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resolution of these difficulties rests in observation and experimentation.
These, in turn, lead to refinement of theory, further analysis and predic-
tion, until a course is determined which best fits the ''real' universe as
we sense it.

In studying the gravitational attraction between two arbitrary
masses, one must come to a definite decision as to whether to consider
each of the masses as consisting of separate and discrete particles, or
to idealize the conception mathematically and consider each méss as con-
sisting of '"continuously distributed'" matter. Although a case may be
logically built for the first possibility, the second alternative--that
of continuously distributed matter--has the decided advantages of mathe-
matical tractability. It avoids the necessity of defining a vparticle,
and takes advantage of the close agreement of the results with observa-
tion and experimentation.

To introduce the concent of the gravitational force 'field'" due
to a body, consider, a mass M of volume V enclosed by a (smooth) surface

S. Let there be a particle of unit mass (1 gr., in the CGC system),

which will be called a unit
particle, at an arbitrary point P.

Think of the volume V as subdivided

av, into a large number, n, of small
pieces, the volume of the ith piece
being AVi, its mass AMi, and its
distance (say from its center of

gravity) to P, . If the mean
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density of this little volume, AVi is #., the force of attraction between

"

the unit particle and P and this little volume is, to a high degree of
accuracy (if AVi is small enough and I, large enough) equal in magnitude

to

AF] = G - 1 .‘PIAVI
)

)

and its direction lies along the line joining P to the ''center" of
Avi.
Now, utilizing the principles of the integral calculus, each Vi
is allowed to approach zero in such a way that its maximum diameter, too,
is allowed to approach zero. The number of subdivisions n of V increases
indefinitely and, in the limit, assuming this implied continuity of matter
constituting M, there will be a force of attraction F between the unit
particle at P and the mass M, definite in both magnitude and direction,
This force F is the limit of the
vectorial sum of these N forces,
AFi,
<———1r-““p It is evident from this
definition of the force F that its
value (in magnitude and direction)
will depend on the position of P
(which, at least for the present,
is assumed outside of V). 1In other
words, at each point of space a vector can be drawn representing in direction

and magnitude the force of attraction between a unit particle at that point
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and the mass M. This is schematically illustrated in the next Figure,
which one should visualize in its three-dimensional aspect.

A number of facts should be obvious, intuitively, at least, about
these vectors. In the first place, the magnitude of the force F decreases
with increasing distance of P from M. Also, as this distance gets larger,
the vector representing the value of the force F tends to point to a common
oosition of-M"(its center of gravitv)since M becomes rela-
tively at least, a particle for greatly removed positions of P. Finally,

and most importantly, these vectors vary continuously in space. By this we

mean that as the point P moves continuously in space, the corresnonding
vector F changes both in magnitude and direction in a continuous manner.
Each vector flows smoothly from one nosition to another.

These facts give rise to the concept of the field of force of M,

The field of force for M consists of the totality of these vectors in
space. It may become clear, from the figure, that as a result of the
magnitudes and dispositions of these vectors, there will be a system
of curves in space such that each vector will be tangent to one of these.

It is natural to call these curves the lines of force of this field, and

it becomes apparent that if a finite number of these lines of force is
drawn, the spacing of these lines will, in some way, depend on the magnitude
of the force in the neighborhood. Where the force is small - as in regions
remote from M, the spacing of the lines becomes sparse; and as the force
increases, on approaching M, the spacing becomes thick.

By considering the unit particle at P as a probe, moving it through

space and noting the attraction between it and the mass M, we have an
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effective way of studying the field of force due to M.

The essence of most interpretations of gravity data having scien-
tific merit ultimately rests on the study 9f these gravitational fields.
That is, the gravitational field due to various types of masses, are
studied. The conclusions derived therefrom form the physical basis for

going in the reverse direction from gravity data to the geologic model.

GRAVITY EFFECTS OF CERTAIN GEOMETRICAL FORMS

The Field of Force of a Straight Rod--At this point it is instructive

to examine a few specific examples of fields of force in order that the
physical ideas may be made sharper. The base of a thin homogeneous rod;
so thin that it may be considered as a linear rather than a solid object,
will be considered first.

Let the x-axis of a coordinate system be laid out along the (linear)
rod, with the origin O at its center. The y- and z-axes are theh arbitrarily
set up through O, mutually perpendicular and each perpendicular, of course,

to the x-axis.

:(x,y,2)

Al
(0.,0,0) (3,0,0)
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If the length of the rod is 2a, the coordinates of the end-voints, A'
and A, become (-a,0,0) and (a,0,0). Let P:(x,y,z) be an arbitrary point
in space. It should be intuitively apvparent that the field of force

is cylindrically symmetric with respect to A'A. Hence all we need study
is a plane meridian section of this field, as indicated below. R is
chosen as the radial coordinate in an arbitrary plane section through
A'A and the coordinates of P are given by (§:r). Let the linear density

(gr./cm.) of

A'
(-2,0) 0 Ax (a,0)

The rod be P,so that the mass of an element of length Ax of the rod will
be pAx. (The x-coordinate has been retained along the rod.) In order to

keep the proper dimensions in mind, a unit particle at P will be indicated

by its mass I (=1 gr.) for didactic purposes.
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The magnitude of the force between the mass I at P and the mass

of the element Ax of which Q:(x,0,) is some point, is

L G 10O
ar ¢ (PQ)*

Its component in the x-direction is therefore

AF = -%_sz—x-cos (PQA)
s GIEAX . - X
(E-xF +r° JE-x7 +r

g . GIp(§-x)Ax |
(€ -x) + )%
Similarly, the component of AF in the r-direction is

AFe . GIP‘I”A}:
I(f -x) 4 r]”

From these elementary considerations we pass to the limit by

dividing A'A into a large number of these x-subdivisions, and then

letting this number increase indefinitely while at the same time requiring

all the Ax's to approach zero in length. We thus get, as the x-component, the

resultant force of attraction F between P and the rod:
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F o= -CGI - Xx)dx
X P (€ - x)* + rf|%
’.
= -GIp E - 1
/(E'a) +r W-ya)l...? : .

Similarly, the r-component of the force of attraction F between P and
the rod is

a

F = -GIpr dx
P [(E-x)!+r']"

a
. GIP r 8 - - 8
r & e v e

The force of atraction F of a unit particle at P toward the rod
is, then, indicated by the vector lying in the plane of the rod and the
point P (from the cylindrical symmetry of the situation) and has a com-

ponent parallel to the rod of

F oo 1 - 1
X GIp[J(E +a) +r° 7(? -a) + r{’

_GIM

S S S
= ’
2a ¢(£ +a) +r «(f -a) +rt

since the mass of the rod is M = 2ap .

The component of F in the orthogonal direction is

r r -a) +r (€+a) + 1
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A physical meaning can be given to these last two results so that
the field of force can be studied. First the results will be separated
from the coordinate system. Referring to the previous equations and to

the figure below,

the component of the force of attraction F parallel to the rod A'A may

be written as

. =GIM(_1__}_)

X 2a \s' 8
having arbitrarily designated the orientation A'A as positive in the
indicated direction. Similarly, the component at right angles to the

rod A'A in a meridian plane may be written as
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F _ _GIM| cosa cos a'
T 2a | s sina s' sina'

With the minuS-sign, a positive direction in the meridian plane at right

angles to the rod direction A'A has been chosen.

Let the angle between the force F and A'A be indicated by ¢. .
Then
tan ¢ = §
g' cos @ sin a' + s sin o cos !
s (s - s*) sin a sin a'
Since

s sinq = s8' sin Q' = H, .

the length of the altitude of the triangle A'PA on A'A, one concludes that

]
tan @ - SO8 Q@ + cos a
¢ sin a - sin '

The trigonometric manivulations follow, using the identity:

tan @ + tan Q
- tan @ tan a

tan (¢ + a) = 1

cos a +.cos '  8in g
sin ¢ - sin ' cos
- CoB a+ cos a' sin o

sin a - sin Q' cos Q

-¥

cos® @ + cos a cos a' + 8in® @ - sin @ sin Q'

= A

sina cos @ - sin a' cos a - sin @ cos @ - s8in a cos Q'

_ 14+ cos (a+a')
- - s8in {(a + a')

_l-cos[m- (a+a)
- -sin[f— (o + a')]

_l-cosz - Y
= T sin —-tan2
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(e

vhere Y = JA'PA.
This means that

g+ a-+ g’: v ;

and that, in fact, PB bisects JC A'PA. The force of attraction F,

therefore, between the unit particle at P and the rod A'A lies on the

bisector at P of the angle subtending the rod.

How large is this force F? It can be shown that the magnitude of

F is

where

b being the length of the bisector PB from P to the rod.

From this information, the field of force of the rod can be
constructed. At each point P of an arbitrary plane through the rod A'A
draw the bisector of the angle A'PA. Specifying a directién at each
point P of the plane in this manner, it can be shown that all these
directions do in fact define a family of curves in the plane. First, it

can be shown that the curve which is such that its tangent at any point
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bisects the angle at that point which subtends a linear segment (A'A),

is a hyperbola with the end points of the segment as its foci. It will
follow then that the vector at any point indicating the attraction of a
unit particle there to the rod A'A will be tangent to the hyperbola through
that point whose foci are A' and A. It will also follow that all these
vectors will align themselves so that their envelopes form a family of

hyperbolas whose foci are at A' and A,
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A few of these hyperbolas (with their asymptotes sketched in lightly)
are shown in the accompanying figure. Consider, then, the totality of
these hyperbolas in this plane, and then consider the totality of hyper-
bolas of this sort in "all" the other plane sections through A'A. All these

hyperbolas constitute the field of force of the linear rod. The hyperbolas

are called the lines of force.

If it is desired to find the vector representing the force of
attraction of a unit particle at any point of space toward the rod, one
need only draw the tangent to the only hyperbola of this system of
hyperbolas passing through that point. The magnitude of the vector will
depend on the '"density'" of lines of force.

It is instructive to consider a problem of practical concern in
gravimetric surveying. Suppose a plane P is parallel to the rod, A'A.

Suppose, further, that at an arbitrary

point P in this plane P, it is desired

P : to find the component Fn of the force

of attraction F between a unit particle

at P and the rod A'A,which is normal

Al A to p. To find Fn’ there is a choice
of mathematical approaches, one of which
would be a direct calculation using the
results obtained previously. This approach looks rather forbidding; so
another approach will be considered because of its relative simplicity and

for the sake of introducing further tools and concepts.



Ai;

26

Suppose that, from the mid-

point Q of A'A, a perpendicular
is dropped to the plane p and the
foot of it is designated O, as
the origin of a coordinate system.
The line in p parallel to A'A
is the x-axis, the y-axis is in
p perpendicular thereto. The line
0Q, oriented from 0 towards A'A
will then be the z-axis. As hefore,
the length of A'A is taken as 2a;
and 0Q = h. Thus, the coordinates
of the various points in the figure
are

o: (0,0,0)

A': (-8,0,1)

A: (a,O,h)

Q: (0,0,h)

Let P:(x,y,0) be a point of p where the

unit particle is located. If the linear density of the rod is p, the

element of mass contained in an element of length Aéﬁ surrounding the

point

K: (5;,0,1!)
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of A'A is
p Ak
and the force of attraction between P and the element at K is approximately
N’. = JGI Ae’ = GIPMi
r} (x -€)° + y*+ 1

where r; = PK, and I represents the unit mass at P. If the angle between

PK and the direction 0Q is indicated by i, the components of the force

AFn normal to p is, then,

GIpAL,
O = (x -&)F +y + 1 cos @y

) cIpaé, - n
T [x =€) + ¥+ n']%

It is now a simple step to get the component of force we are seeking

by setting up and integrating the proper integral; namely,

a

aé
GIfh [(x Z ¥yt e pn

-a a

Fu

¢ - x

(% + n®)[€% - 2&&x+ (x* + y*+ hTﬂi

GIph
-a

. a - X
(a + n*)[a® - 2ax + x* + y* + D'k

GIph

. a+ X
(a® + n*)[a® + 2ax + x* + y* + n)h
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GIPh a+ X a-Xx

+
a'+ nt Wa+ x) +y + h* Wa-x? +y!~|-hl

= Q?Iﬁ%l!{cos X PA'A + cos .\:PAA'}

These curves in the plane p assume an appearance of this sort:

X

It is also instructive to plot the "vertical gravity'" section

immediately over the rod (y = 0); namely

F - _GIfh 8+ x + 8 - X
7.6 at+nt /(a+x)'+h‘ /(a-x)‘+h’
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The '"vertical gravity" section along Oy, (x = 0), similarly, is:

Rl = 2cxeha{ 1

2.0 (af + nY)| /a? #H;j + h?

F

One final remark, which will be of some practical importance later,

should be made concerning the attraction between a unit particle and a

long rod.
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Refer to the result at the bottom of page 20. If P is on the
perpendicular bisector of the rod (61 0), the attracting force R,

oriented positively toward the rod, is

F = —2GIpa
r rfat + 2 °

If the length of the rod is allowed to increase indefinitely; i.e., if

we let a increase without limit, we have

_ 26IP .
et S

that is, the force of attraction Fr does not increase indefinitely, 1In
fact, the force of attraction between an infinite rod and a unit mass at
a distance r varies inversely with the distance r.

In practice, this result will be of importance in many problems because

(for practical purposes) "infinite" extension of the mass in one direction

can often be assumed. In addition, it is assumed that the mass is built

up of rods of infinite length in the same direction. How 'big" a dimension
must be to be considered "infinite" is, of course, a matter of sensitivity
of the measuring devices and the accuracy of the measurement desired or
attained.

The Circular Disc--The result at the bottom of page 20 which expresses

the force of gravitational attraction Fr between a unit mass I at a point P

on the perpendicular bisector of a rod of length 2a and at a distance T is
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F = ZGIEa
' ryya& +r
- GMI

raa! + !

where o is the linear density of

its mass. The force Fr is oriented

— rod (assumed constant) and M is
¥

r

l positively toward the rod. From

|
kﬁ-—-ar--¢-ﬁ-—-d--—*1

the symmetry of the situation,

arising from the fact that P is
taken on the perpendicular bisector of the rod, it follows that Fr is the
total force of attraction; that is, that there is no component at right
angles to R.

Consider, now, a point P, at which there is a unit mass I which
lies on the axis of a circular disc C. If this disc is of uniform
lamingr density, what is the force of gravitational attraction between
I and C? Since P is on the axis of C it follows immediately that the
force will be along this axis directed toward C. Through 0O, the center
of C, choose any diameter dd of C. At distances x and x+Ax from 0O,
draw two chords parallel to dd, the first being indicated by ss. These
two chords substantially (to within infinitesimal corrections of high
order) define a rod of length ss and width Ax, if Ax is small enough.

Now



where r is the distance PT, and T the midpoint of ss.
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in which a is the radius of C,
and if we denote the surface
density of C by 4, then the mass,

M, of this "rod" is, approximately,
M=8 .2 af -x* - ox.

Between I at P and this rod there
is an attractive force AF equal to

G .MM .1

aF = rf(a -x)+r

This, of course,

comes from the second of the equations of page 31 , with the symbols

replaced appropriately for our figure.

OF =

This last form, in turn becomes

2GIS Va® - x! Ax
i+ nJ(a -x) + (x + b))

- 26I8 Jai - x° Ax
at + bt fx* + ht '’

in which h is the distance from P to O.

The component of AF along PO is evidently

AR = AF cos 6

2GI§Ja’ - x° O h -
Je& + h? Jxt o+ n? (Jx! + h')

26I®hJa® - x' &x

]

at + h

(x* + h?)
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Accordingly, the attraction of I for the disc C is, then,

a
F - 2618h  J&' - x* ax
ya* + h? x* + nt

-8

at +h‘ x* + n?

LGISh / faf - x* ax

B %
_ _boIgn | Ve + n’ o xJe + n n’ P
yat + n h hVal a8
o

4GISh V&' + 0’ g _ g

\E.z +hz h 2 2

vy
L]

2018;{1 - F'Th?:l .

* This integration is performed by rewriting the integrand:

, \/a!-x’= 1 a® + b
a® - x

x! + nt x? + nt

and using Formulas 229 and 127 of B. 0. Peirce's "A Short Table of In-
tegrals".

The last result, which has an important béaring on what shall be later

referred to as the terrain correction, shows that the total force of

attraction between a unit particle I at a point P in the axis of a disc

and at a distance I from the disc, the radius of which is a is directed

along the axis toward the disc and in magnitude is equal to
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F = 20187[1 - \7:?%:7]

Recalling that J&is the surface.density of the disc, then the mass
of the disc is

M= ma!d
and the result may be rewritten as

P - 26IM

-]

Returning now to the first form of the result, notethat as the
radius a of the disc grows larger and larger; that is, as 2 —> «,

the force of attraction approaches a limiting value

1im F = 2GI3w,

a—+>oo

a value independent of h., That is, the attraction of a particle to an

infinitely extended thin plane sheet is independent of the distance of

the particle (h) from that sheet.

In practical terms, this means that the gravitational field
over the central area of a horizontally '"very extended" thin bed consists
of parallel lines, at right angles to the bed, so that the force of
attraction is constant in magnitude and vertical at great distances from
the bed. 1In fact, as we see, the ratio between the actual value of this

force and this limiting (constant) force is

P
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This result will form the basis of some numerical calculations for terrain

corrections which will be discussed later. :
Homogeneous sphere--

Let us now consider the

P:(0,0,r) ‘ attraction between a unit particle and
,F a homogeneous sphere. It is apparent,
from considerations of symmetry, that
the direction of the force lies along
the line joining the particle to the

center of the sphere. Let the radius

of the sphere be a and choose the x-axis

as the line which joins this center

to the unit particle, as drawn.

and .

when Az is sufficiently small, we have a thin disc of mass

oM =(at - zt) - 8- 82,
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in which 6 is the specific gravity of the material composing the sphere.

The attraction between the unit particle at P and this thin disc

is, according to the result of page 34.

2G- oM. 1T, r -z
a® -zt J@ -z') + (r - z)

=261 §-mla® - z5?)oz 1 r -z
(a® - zt) Ja' o+t - 2rzg ’

where r is the distance between the unit particle and the center of the

sphere.

Thus, the required force is

21nd (1 - X dz
vat + rt - 2rz
-a

a
201#8[:2 + (g';_gz__-_rg) \/a’ + rt .- 2rz;l

3rt
-a

3
"

= 2GIﬂ8[a+ (2r* - a' - ar)(r - a) +a - (2r? - a? + ar)(r + a[J

3rf 3rt

- 26Imd [68.1" + 2% - 6ar']
3r*

WGIwad _ GIM

POt e = ’

3rt rt



 *

since the mass of the sphere, M, is equal to

Lhrad
3

The result is well-known and of the upmost practical importance.

It says that the gravitation field of a homogeneous sphere (outside the mass

of that sphere) is the equivalent of the field of a particle of mass

equal to that of the sphere and located at the center of the sphere,

Since a spherical shell is formed by removing from a complete

sphere one that is concentric with it, it can be shown that the attraction

between a homogeneous spherical shell and a unit particle outside the

sphere is the same as though all the mass of the sphere were concentrated

at its center.

It is apparent that the same result applies to a sphere, or a spherical
shell, in which the density is a function of the radius alone.
The sphere is a useful model for approximating 3-dimensional

geological structures whose horizontal dimensions are substantially less

than the depth. Typical applications are for salt domes or igneous plugs

and intrusives. The sphere attracts as if all its mass were concentrated

as a point at its center. There-

X P
90|90,

fore, the gravity effect at

3
P(x,0,0,) is g = _(_3_);_13 4LR_(2;_D__
r 3r
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The vertical component of gravity g, is given by

g. = gecosb
z 3
. Gm z 4MR"pG Z
r2 T .3 (x2 + 22) 3/2
_amr3 o6 1
= X .
322 1+ X 372
Z
= K- f (x/2)
_ 8.520R° 1
22 1+ %% Y 3/2

where R and z are in kilofeet and

g, is in milligals
= 27.94pR3 1
22 (1+ X2y 3/2
Z2

where R and Z are in km

As an example, consider a sphere with radius R =3,000 ft., depth
to center z =5,000 ft. and P (density contrast) = 0.25., Calculate a

vertical gravity profile across the sphere.

_ 8.52 pR® 1
g, = ) 2
- [(1 N 3/2]
= K * f(x/2)
Substituting,
¢ (8.52) (0.25) (9) _ , 5

25
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and
10
x/z f (x/2) g, o .
L
0 1 2.31 J/~;
$§04
S
1/2 0.71 1.62 [1 % |z
/ L) \
\0_.;
1 0.35 0.81 T T TSR
: s v Ground surface’
7 - r
2 0.09 0.21 <E%?

A result of considerable significance that follows from the
fact that the attraction of a homogeneous sphere, outside of the sphere,
is the equivalent of that of a particle of equal mass located at the
center of the sphere is that it would be impossible to differentiate
between two such spheres (or spherical shells) of equal mass (of
different densities and thus of unequal radii) by measuring their fields
of attraction at points outside the spheres. This lack of uniqueness
in the determination of the attracting bodies from their gravitational
fields is one of the limitations of the gravity method.

Horizontal Cylinder--An infinite horizontal cylinder is a useful

model when approximating 2-dimensional geological structures whose
horizontal dimension is less than or not much greater than the depth to the
center. A long anticline would be an example of a geological structure

‘The gravity effect from a horizontal line element of infinite length at

P (x,0,0,) is. (see page 30)

2 Gm
r
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The vertical component of gravity g, is given 7
by [
g, = g cos 8 Z
g, = g cos O = 2G2m Z -l

T

If the horizontal line element is replaced by a cylinder having mass

per unit length of T Rzp,

2
g, = 2mp R %z = 216 P R —
- x“ +y

. 2 Gmp R2 1

Z X2+22

2
z
e

_ 2nG_p R? 1
= 5 =K« f (x/2)

z

1l + X
2
z
2
12,77 PR

= ——————— - f (x/z) where R and z are in kilofeet and

z g, is in milligals,

2

= ﬁl;géﬁi, * £ (x/z) where R and Z are in km

Thus, a homogeneous infinite horizontal cylinder attracts as if all

its mass were located at its axis. The depth z is the depth of an infinite

line mass which has the same mass as the cylinder and produces the same gravity

anomaly.

As an example, calculate the vertical gravity profile at right

angles across an infinite horizontal cylinder with radius R = 3,000 feet,
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depth to the center z = 5,000 feet, and density contrast p = 0,25,

2
Substituting in g_ = 12.77 o R . 1 >
z 1+ X

z -
ZZ
k= (12.77) (0.25) (9) _ ¢ ,,
s i
and 0
920
x/z  F(x/y) g, ; o.eK
Q
0 1 5,72 / %“NOA \\
L]
1/2 0.80 4,58 oz
\h‘—
1 0.50 2.86 =T 1 —— : T
t P K
2 0.20 1.14 z r - Grournd surface
A\
Y-
3 0.10 0.57 ()

The Vertical Fault--The vertical fault can be approximated by the

edge of a semi-infinite horizontal layer of finite thickness--a 1-dimensional
model. The gravity effect of this body can be calculated on the assumption

that the material is condensed into a thin sheet at the central plane

1 i i " " — .
-5 4 3 2 - o2 3 4 x/2 3 of the body. The vertical gravity
; tan"*zf -7
‘:: ______________ 3{‘@_’: ;rau/# face perperndicular € ffeCt 1s glven by
= ! ‘o paper

b -1 x

= 2Gpt [ = + tan -

gz P 2 z

or
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=K * f (x/z) = 12.77 p t £ (x/z) where t is in kilofeet
= 41.93 p t f(x/z) where t is in km
In both formulas g, - is in milligals. For a unit density contrast,

a fault throw t of 2390 cm (or 78 feet) is needed to produce a gravity

effect of 1 milligal. Thus, the thickness of faulted material of density

contrast p required to cause a gravity effect of 1 mgal is about 80/p feet -t

or 24/p metres.

|
| T ()
1 0| m/2
¢ -3 *% = | ] -~ © 0
:___.______-,? + o |7
Q

This expression applies for a sheet whose horizontal extent is infinite
compared with either the depth or thickness. From the accompanying gravity
profile for the fault, it is evident that it takes a distance of about

6 times the depth (from x = -3 to x = +3) to reach about 80% (from 0.1 to
0.9) of the theoretical total magnitude for an infinite width sheet. Thus,
5;%6 = 97 feet of unit density contrast material to

have a gravity effect of one milligal. Thus, for a given gravity effect

it would require

and density contrast, the required thickness, in feet, is

t = (100/ p) 7, Max
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where t is in feet, p is the density contrast, and g, max is the maximum
gravity relief in milligals. An example of applying this general rule is
shown in the attached figure of the gravity profile in the Los Angeles, CA

Basin. From the gravity profile across the basin, the gravity relief

+ 40 > 40
“
+ 30 e, 20
\\A .
+ 20 ~ *20
Qero ¥ 0
3 b
N o a3 ~ ,r‘ BTN g °
3 N - -
s T v am N = w0
- 20 Sa Pld 20
Jv ‘\~‘--“-_;-" -
-3 .
GRAVITY PROFILE =
€
. 3
x o
Ag § - i g 3 s p
-'“°°°] San Pedro i DOMINGUEZ 2 gp § Bty SanGabre! Mts.
sea ! , oL FIELD -~ al b oL rie Q ;
Ve g Fran,. = . .
Crs .

-5.0004|

19960

S o ', MILES
S o] S KILOMETERS
L e ]

is seen to be approximately 60 mgal. The density contrast between the
relatively recent Pliocene and Miocene sedimentary rocks and the
Franciscan metamorphic basement rocks is not known precisely, but can
be estimated to be between (2.7 - 2.2) = 0.4 and (2.7 - 2.4) = 0.3.

0

Using a value of 0.35, we have a thickness of %ggg or 300 feet per

miligal of gravity relief. Thus, the approximate thickness of the

sediments in the basin causing the 60 mgal anomaly would be (60) (300) =

18,000 ft.

.
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ACCURACY OF SUBSURFACE MODEL APPROXIMATIONS

Calculation of the gravity effect for simple geometrical shapes
is useful in practice because of the relative simplicity and reasonable

accuracy. Commonly used approximations include: (1) equivalent sphere

approximation for an infinitely long horizontal cylinder; (2) circular

plate approximation for horizontal slabs of finite width: (3) vertical

line element and thin horizontal plate approximations for vertical cylinders

of variable radii and heights (domes, salt domes, igneous plugs); and

(4) thin plate approximations for vertical dikes and horizontal faults

blocks.
Fault-frrors in some of the approximate calculations are remarkably
small (Hammer, 1974).* For example, the maximum error in the thin-plate

approximation.for an horizontal fault plate is less than 1% for a thickness/

depth ratio ranging up to 0.75, a very substantial fault throw (see figure below).

N —
[e]
]
'
~

20~ —20

-~
N
)
O
N
% 1o —10
S
N~
N
N
3 3
]
§ 8
5
-0
S it TTL Tt @ - -2
#x) i L P W9 sumrace + } {-x)
i v S(r‘-'ﬁ, 8 ! N M

RA™TIQ OF THICKNESS/DEPTH
t-075 N
PERCENTAGE ERROR=-074 AT POINT A A
PERCENTAGE ERROR=+ 1 55 AT POINT B (N '
MAXIMUM PERCENTAGE ERROR 8 ]
RE ANOMALY MAGNITUDE (ggt=0.50 \

NN "

*Hammer, S., 1974, Approximations in Gravity Interpretation Calculations,
Geophysics, v. 39, no. 2, pp. 205-222.
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For the semi-infinite fault block of finite thickness (throw), the gravity

effect is given by the general relation:

T
_ 2
g, = 2Gp Ijéz(t+d) - Gld-xlnr :l
1

Compressing the mass of the fault block vertically onto its central plane

given the thin-plate approximation:

m X
g, = 2Gto = 2Gpt [——2- + arctan ;]

The error in the approximate gravity value is

E(x) = g'(x)-g(x)

The error is zero directly above the fault and has equal maximum and

minimum values on opposite flanks. The maximum error calculated relative

to the magnitude of the anomaly

GRAVITY OF FAULT
ACCURACY OF THIN PLATE APPROXIMATION (at x = «) is less than 1/2%

!
ERROR = g-g A graph showing a summary plot

g(m)
9 =GRAVITY ANOMALY OF FAULT

9'= ANOMALY BY THIN PLATE
APPROXIMATION 2-dimensional fault block is

of errors for a thin-plate

approximation for a vertical

shown on the left. The error
is plotted relative to plate

thickness (t/z). It is apparent

1 1

that the accuracy of the thin

1

o
|
MAXIMUM ERROR -PERCENT

plate approximation is satis-

factory for all but the most

extreme cases.
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For an error not exceeding 2%, t/z may be as large as 1.5, for which the
fault throw is six times the depth to its top.

Equivalent Sphere Approximation--It is useful sometimes to assume

that the observed anticlinal gravity anomaly is caused by an infinitely
long horizontal cylinder and to calculate the interpreted structure in
terms of an equivalent sphere. The gravitational attraction for the

infinite horizontal cylinder is given by g, = 2GM[?—-—E——§—]. When

2
x“ + z
x =0, g(o) =2GM and the radius of the cylinder, Rc' can be defined as
Z
1/2
Rc = [g(o)Z/ZvG%
L0

\
N
lEQUW@LENT//>\
' SPHERE

~—
- ——
——— e -

g
-

The depth to the axis of the cylinder, Zs is given by the '"half-width"
of the anomaly: z = X*, The equivalent sphere defined 'to fit the gravity
profile of the horizontal cylinder at x - o and x - x* has the following

parameters .
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Depth: Zs = 1,305x* =1.3052c
2 1/3
Radius: RS = %g(o) . Zs /4wGp]

The calculated gravity profile for the equivalent sphere is obtained from

3
3/2
g = 4% §§__ 1
3Zs 1+ fz
. 72
S

Equating g'(o) and g(o), we obtain

p 1/3
R=1.367[—°- RZZ]
s 0 c ¢

S

Comparison of the gravity profiles (see figure) shows that the approximation

is very good. The difference is negligible except on the flanks where the

effect of the sphere falls off more rapidly. Although the radius of the

equivalent sphere is considerably larger than that of the cylinder,

the depth to the top is reasonably close to that of the original cylinder.
The error in the estimated depth depends on RC which depends on the
density contrast p. The radii in the figure were drawn assuming P = pc
and for two cases: (a) Rc = ZC/Z for which Rs = 1.722 RC (the depth

error is -11.3%) and (b) Rs =ZS = 1.3052c for which the top of the
interpreted sphere is at the surface. The denth error of the latter limiting

case is 100%.

Vertical Cylinder and Approximation by Axial Line Element--An important

class of geologic structures (e.g., igneous plugs, salt domes) can be
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approximated by vertical right cylinders. Unfortunately, calculating
the gravity effect of a vertical cylinder is easy only on the axis. At
all other points, the calculation involves elliptical integrals or a
series expansion of Legendre polynomials.

One approximation is to com<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>